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The symbol of the Hessian for a static aeroelastic optimization
model problem is analyzed for the optimization of a plate’s shape
and rigidity distribution with respect to a given cost function. The
flow is modeled by the small-disturbance full-potential equation
and the structure is modeled by an isotropic (von Karman) plate
equation. The cost function consists of both aerodynamic and struc-
tural terms. In the new analysis the symbol of the cost function
Hessian near the minimum is approximated for the nonsmooth
error components in the shape and rigidity. The result indicates
that the system can be decoupled to two single discipline submini-
mization problems which will effectively converge to the multidisci-
plinary optimal solution. The result also indicates that the structure
part in the Hessian is well conditioned while the aerodynamic part
isill conditioned. Applications of the result to optimization strategies
are discussed and demonstrated numerically. © 1997 Academic Press

1. INTRODUCTION

Lately, there is a growing interest in multidisciplinary
design and optimization (MDO) [1-4]. An important prob-
lem in that field is the static aeroelastic optimal design
problem (for example, [S—7]). In this problem there are two
coupled disciplines: aerodynamics and structural analysis.
The problem is to compute the aerodynamic shape and
structural rigidity such that some given cost function is min-
imized.

The purpose of this paper is to demonstrate new analysis
of Hessians for MDO problems on the above aeroelastic
optimization problem and to draw some practical conclu-
sions. The approach is to consider a simple model problem
and approximate the symbol of the Hessian near the mini-
mum for the nonsmooth frequencies. The Hessian contains
curvature information which is essential for the solution
of ill-conditioned optimization problems. Hessian symbols
were previously computed for smoothing predictions in
the development of multigrid one-shot methods [8—11] and
lately for the analysis of inviscid aerodynamic optimization
problems [12]. The analysis in this paper indicates that for
the nonsmooth components the system can be decoupled
to two single discipline subminimization problems which
will effectively converge to the multidisciplinary optimal
solution. The analysis also indicates that the structures part

in the Hessian is well conditioned while the aerodynamics
part is ill conditioned. It should be emphasized that in this
study the shape of the plate is allowed to change only in
the normal direction (the planform remains fixed). There-
fore, no inferences could be made as to the coupling be-
tween the aerodynamic and the structural design when the
planform’s shape is allowed to change during the optimi-
zation.

One consequence of this result is that the solution of
such problems can be achieved in two stages. In the first
stage, the MDO approach should be taken on a coarse
model; that is, the flow and the structure equations are
considered simultaneously during the minimization, which
is a more complex problem than optimizing the decoupled
individual disciplines problems. In the second stage, a re-
fined CFD code for the flow and a detailed finite element
code for structure should be used in a sequential algorithm
in which the shape is optimized relative to aerodynamic
considerations, followed by structural optimization limited
to a given shape. This approach should result in a good
approximation of the multidisciplinary optimal solution.

The paper outline is as follows. In Section 2 the optimiza-
tion problem is formulated. In Section 3 the necessary
conditions for a minimum are derived with the adjoint
method and their relation with the Hessian is discussed.
In Section 4 the symbol of the Hessian for the nonsmooth
frequencies is derived by using local mode analysis. In
Section 5 applications of the result to optimization strate-
gies are discussed. In Section 6 the two strategies are dem-
onstrated numerically on a simple model problem. Finally,
Section 7 contains concluding remarks.

2. PROBLEM FORMULATION

In this section the aeroelastic analysis problem and the
optimal design problem are presented. The aeroelastic
analysis problem couples the full-potential flow equation
with the isotropic von Kdrman plate equation to give the
pressure distribution over the plate, p, and the plate defor-
mation, W, for a given plate shape, «, and rigidity distribu-
tion, D. The design problem is to compute the “‘best”
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shape and structural rigidity so that a given cost function
is minimized.

The cost function is composed of aerodynamic and struc-
ture parts. The aerodynamic cost function estimates perfor-
mance by measuring the difference, in L, norm, of the
pressure distribution from a desired one. The structure
cost function gives a measure of the structural weight and
penalizes structural deformation.

Since our interest is in a local mode analysis of the
Hessian near the minimum, we consider the small distur-
bance equations of flow over a flat plate.

2.1. The Flow Model

We choose the full-potential equation as a model for
the flow. It approximates inviscid flow characteristics and
is used in applications for aerodynamic optimal design
(for example, [13]). For the analysis of the cost function’s
Hessian in the vicinity of the minimum it is enough to
consider small perturbations of the shape from the optimal
solution. The resulting changes in the potential, ¢, satisfy
the steady state small disturbance potential equation. The
geometry is taken to be half-space ) = (x, y, z = 0), where
the x axis is the stream-wise coordinate, y is the coordinate
perpendicular to the stream and parallel to the plate (span-
wise direction), and z is in the normal direction to the plate.

The aerodynamic state equation.

Lé=0 z=0

Bo=(a,+W,) z=0 D

with the following definitions of the interior operator, L,
and boundary operator, B

L=(1-M?»)d,+0,+d.,

b 2.2)

Z

where U., is the free stream velocity, M is the Mach num-
ber, with the following far-field boundary conditions:

Inflow boundary condition.

Subsonic: ¢, = 0
Supersonic: ¢, = 0 and ¢ = 0 (we assume that the
normal free stream velocity, V.., is zero).

Outflow boundary condition.

Subsonic: ¢, = 0
Supersonic: No Boundary Condition.

The missing low-order terms in the boundary condition
of (2.1) vanish if the analysis is performed around a flat
shape.

2.2. The Structural Model
The structural model consists of the isotropic von Kér-
man plate equation for the displacement W [14, 15]

G(D,W)y=-p z=0 (2.3)

with the following definition of the operator G:

G(D, W) = (DW, ) + (DW,,),, + V[(DW,y) "4
+ (DWxx)yy] + 2(1 - V)(DWX)’)XY’ ( . )

where D is the plate rigidity distribution, p. is the flow
density and vis the Poisson ratio. The pressure, p, is related
with the potential, ¢, by the Bernoulli relation (we assume
¢ < U.)
P =ps— pUit,. (2.5)

In two space dimensions Eq. (2.3) reduces to the beam
equation

(DW)wx = —p= + pUspe 2 =0. (2.6)
There are few choices for the boundary conditions for the
plate. However, Eq. (2.3) is elliptic, so the effect of a high-
frequency error component in the deflection W is local,
and therefore the plate boundary conditions do not play
a role in the local mode analysis.

2.3. The Cost Function Model

The definition of the cost function is not unique and
depends on the specific application under consideration.
In general, the requirement of the aeroelastic optimal de-
sign is that it have maximum aerodynamic performance
and minimum structural weight and deformation. Some of
the desired features of the final design are in many cases
modeled by a set of inequality constraints, as is the case
for the minimum deformation requirement. However, for
the purpose of this paper we will avoid inequality con-
straints by adding a term to the cost function which penal-
izes deformation. In the following the different terms com-
posing the cost function are discussed.

* The Aerodynamic Performance Term

A common aerodynamic cost function is drag (or drag
over lift). However, in inviscid aerodynamic optimization
models acommonly used cost function is pressure matching
(for example, [16-20]). Relation (2.5) implies the cost func-
tion term

Fere = [ (o= 1) do,
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TABLE I
Rigidity and Weight

D Weight
Beam Ebh? pp Jr bh dx
12
Plate Ef pp Jrt dx dy

12(1 - 1?)

where do is an integration element on the shape I'. The
target distribution, f*(x, y) € Ly(I), is related to the de-
sired pressure distribution, p*(x, y), by the relation

p*(x,y) = P
f*(x,y) = T

* The Structural Weight Term

Another important factor in aeroelastic design is the
resulting weight of the structure. In practice the weight is
measured by the sum of the weights of all the components
composing the structure. In plate models the weight is
related with the plate rigidity, D, and is given in Table I,
where E is the Young modulus of elasticity, b and /4 are the
cross section components of the beam, p, is the structural
density, and ¢ is the plate’s thickness.

In both cases the weight of the structure is proportional
to DY where d is the space dimension

weisht o frDl/d do-

* The Structural Deformation Term

As a result of the pressure, p, exerted on the plate by
the flow, the structure will deform its shape by W (bend
and twist). In practice the structure is designed so that the
amount of deformation will be constrained not to exceed
some given limits. In this model we account for this require-
ment by penalizing the deformation which is measured by
the work of the aerodynamic pressure on the plate, pW.
This will add to the cost function the term (see Eq. (2.5))

Féeforn = p U2 f W do.

Note that the effect of transverse velocities have been
disregarded in this model problem.

2.4. The Optimization Problem
We define the cost function, F = F(¢, W, D), to be

F(@W.D) =y [ (6~ f*} do+ v, [ D" do

2.
+ s [, 6 W dor, .

where vy, v, v; are parameters. The cost function is a
map from a function space to R.

The minimization problem is to find a shape function,
«, and rigidity distribution, D, such that the cost function
is minimized subject to Egs. (2.1) and (2.3). We assume
the existence of a solution for both the state equations
and for the optimization problem (a rigorous treatment of
existence and uniqueness of solutions is beyond the scope
of this paper).

3. ADJOINT FORMULATION AND THE HESSIAN

In this section the necessary conditions for a minimum
are derived with the adjoint method (e.g., [17-22]). The
necessary conditions are given as a set of state equations
(the analysis problem), costate equations (the adjoint prob-
lem), and design equations (optimality conditions). Then
the relation between the design equation residuals and the
Hessian of the cost function is discussed. This relation will
be used in the next section to derive the Hessian’s symbol.

3.1. The Necessary Conditions for a Minimum

The Lagrangian is a functional defined by

ZL(p,W,a,D, & A, m) = F(p, W, D)

+ [ €8¢~ (ac+ W) dor o)

+ fﬂ AL$dQ + fr W(G(D, W)

- pwU%"(bX) d(T,

where & = &(x, y), 7 = n(x, y) and A = A(x, y, z) are
Lagrange multipliers. The first order necessary conditions
for a minimum are derived by the requirement that the
first-order variation of the Lagrangian vanish (this is known
as the adjoint method and the resulting conditions are
known as the Kuhn-Tucker conditions).

When considering the variation of the structure state
equation a linearization is performed,

G(D* + D, W* + W) = G(D*, W*) + Gp(W*)D 52)
+ Gw(D¥)W + ho.t., '

where D and W are small perturbations of the displacement
and rigidity from the optimal solution W* and D*, respec-
tively, and where the linearized operators Gp and Gw are
defined as
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Go(W*)D = D Wi + D, Wi, + v[D W3 + D, W]
+2(1 - v)D, W% (3.3)
Gw(D*)W = G(D*, W).
Formally, W* and D* serve as nonconstant coefficients in
the linearized structure operator.

In the following the costate and design equations are
given (on the boundary, (z = 0), ¢ + A = 0).

Costate equations.
LA=0
E/\_pngcnx:_F¢ ZIO
Gw(D*)n— A =—Fy z=0.

z=0

(3.4)

Inflow boundary condition.

Subsonic: A, = 0
Supersonic: No Boundary Condition.

Outflow boundary condition.

Subsonic: A, = 0
Supersonic: A = 0 and A, = 0.

Design equations.

-A=0 z=0

_ (3.5)
Go(W*)n+F,=0 z=0,

where

Fy= =2y1(d = f¥) — v3 W,

FW = 73¢x (36)

Y2 -
Fr = _D(l d)ld
D d 5

and where the operators in the adjoint and design equa-
tions (3.4-3.5) satisfy

L=L
Gw(D*) = Gw(D*)
Gp(W#) = Gp(WH).
The adjoint boundary operator B corresponds to the nor-
mal derivative, d,, applied to a solution of the interior
costate PDE, A, when using the adjoint far-field boundary

conditions. We assume the existence of a solution to the
costate equations.

3.2. The Relation of the Hessian with the
Necessary Conditions

If the state and costate equations are satisfied then the
variation of the Lagrangian (3.1) is equal to the variation
in the cost function and is given by

8/= fr_&Ax do+ jrﬁ(GD(W*)m Fp)do, (3.7)

where @ and D are variations in the design variables. There-
fore, the quantities multiplying & and D in (3.7) are the
sensitivity gradients of the cost function with respect to
the design variables, when computed on the constraint
manifold

VF=—A,

_ (3.8)
VDF: GD(W*)’T] + FD'

The state and costate equations, (2.1), (2.3), and (3.4), give
an implicit relation between the costate variables and the
design variables

A= A(a, D)

3.9
n=n(a, D). (39

Using Egs. (3.8) and (3.9) we can write the following rela-
tion which holds near the minimum (a* and D* denote the
optimal value of the design variables « and D, respectively)

V.F(A(a* + @, D* + D))

= H,a+ Hp,D + ho.t.
VpoF(D* + D, n(a* + @, D* + D))

= Hya + Hy,D + h.o.t.,

(3.10)

where at the minimum
VaF(/\(a*9D*)) = VD};‘(l)*s ”’I(a*» D*)) = O

We conclude that on the constraint manifold, near the
minimum, the Hessian of the cost function relates the er-
rors in the design variables with the residuals of the design
equations (sensitivity gradients). In the next section we
will use this fact to calculate the symbol of the Hessian.

4. DERIVATION OF THE HESSIAN’S SYMBOL

In the following section we compute the symbol of the
Hessian with local mode analysis. Hessian symbols were
previously computed for smoothing prediction in the devel-
opment of multigrid one-shot method [8-11] and lately for
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the analysis of inviscid aerodynamic optimization problems
[12]. In the following the local mode analysis is outlined.

The analysis is performed in the vicinity of the minimum
where the design variables are assumed to have an error
@ and D. We assume that the state and costate equations
are satisfied and consider the errors in the state and costate
variables (¢, W, A, 7)) with respect to their value at the
optimal solution. These errors are assumed to satisfy ho-
mogeneous equations similar to Egs. (2.1, 3.4, 3.5), and
a linearization of Eq. (2.3). We then consider the high-
frequency errors in the design variables and compute an
explicit solution of the problem in terms of exponential
functions in a half space. Then with a standard procedure
the problem in a half space is reduced to the boundary. On
the boundary we study the mapping from the transformed
design variables errors to the residuals of the design equa-
tions, (V.F, VpF). The symbol of this mapping gives the
eigenvalues of the Hessian.

4.1. Fourier Representation

We start with the Fourier representation of the solution
in a half space and perform local mode analysis. Consider
errors in the solution of the form

a(x,y) = a(w;, wy)e o)

o R . 4.1)

D(x,y) = D(w;, wy)ei@rte),
As a result, the errors in the state and costate variables
are assumed to have the form

b(x,9.2) = P, wy, w3)e!Crrentos)
X(x, y,2) = 5‘(‘“1 >, W2, ws)ei(‘”l”wzymaz)

w f i 4.2
W(x’ }’) = W(wl , wz)el(wlxﬂuzy) ( )

ﬁ(x’ y) = ﬁ(wl ) w2)ei(m1x+m2y)‘

Before computing the relation between the state and co-
state error symbols, ((}'), AW, M), and the design error
symbols, (&, D), we reduce the problem to the boundary
by eliminating ws from the symbols ¢ and A.

4.2. Reduction to the Boundary

The reduction to the boundary is done by eliminating
w3 from the symbol expressions using the interior equa-
tions. The following discussion regarding the choice of w;
was done in [12] and is repeated here for completeness.

The term ¢ satisfies the interior equation for ¢

L (1, my, ws)eortontost) =, (43)
Assuming a nontrivial solution, ¢ # 0, Eq. (4.3) results in
an algebraic relation between w;, w;, and w;

(1-M»)oi+ w3+ wi=0. (4.4)

The choice of w; should be done such that it will result in
a physical solution. We differentiate between subsonic and
supersonic flows.

4.2.1. Subsonic Flow

In the subsonic regime (M < 1) the physical solution is
given by

w3 = i\/w%(l - M?) + wj,
which corresponds to decaying solutions

B(x,y,2) = by, o) eitrsron)e~VaTI-M) D)z

X(x’y’ Z) — }\((m , w2)ei(m1x+m2y)e—(\/m71(1—M7)+m72 z

In that case the symbols of the boundary operators, B and
B, are given by (recall that B and B are the normal deriva-
tives applied to a solution of the interior state and costate
PDE, respectively)

B=B= Vil - M + w3 (4.5)

4.2.2. Supersonic Flow

We differentiate between two supersonic cases which are
determined by a Mach number denoted M, and given by

(0)) 2
v i (=)
(OF

The case 1 = M = M, results in the same symbols for B
and B as for the subsonic flow case (Eq. (4.5)).

In the case M. < M both signs of w; in (4.4) correspond
to physical solutions. The positive root correspond to the
characteristic which propagates into the shape, ¢., and
the negative root correspond to the characteristic which
propagates out of the shape, ¢_, (and a similar expression
of A)

E(X’ y, Z) — (27+(w1, wz)ei(m1x+m2y+\/\mjl(l—Mz)mzi\z)

+ (,Z)—(wl , wZ)ei(mlxﬂuzy— Vv ‘mzl(l —M2)+(u2\z)‘

(4.6)

Since the inflow information does not change as a result
of a shape perturbation, the following holds:
¢b.(x,y,2) =0. (4.7)

In the same manner the outflow characteristic of the
adjoint is not changing as a result of a shape perturbation:
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A(x,y,2) =0. (4.8)

Therefore,

B3, 2) = b (@, @elreren VLTI

i(m1x+(uzy+\/‘m%(l*M2)+w%‘Z)

X(x, y,2) = L(wl,wz)e

We conclude that for flow speeds M. < M the boundary
operator B is antisymmetric, (with respect to the adjoint
operation), and the symbols B and B are given by

B =-iViei(l — M?) + o

4.9
iViei(1 — M?) + o).

&P
Il

In all flow conditions the multiplication BB results in
the same expression:

BB = |w}(1 — M?) + . (4.10)

By eliminating w; from the transformed equations the state

and costate flow equations can be written on the surface
(@1, wy) which corresponds to the boundary (x, y).

4.3. Treatment of the Structure Equations

In this subsection we give a short note concerning the
transformation of the structure state and costate equations.
The structure state and costate equations contain noncon-
stant coefficients which should be frozen prior to the local
mode analysis. The structure state and costate error equa-
tions are given by (see Egs. (2.3, 3.2, 3.4))

Gp(WHD + Gw(D*W = p,U%p, z=0
p( )_ w( )_ p_¢ @11)
GW(D*)TI —AN=—-Fy z=0,

where D, W, ¢, 7, and A denote the error variables, Fyy
denotes the error in Fy,, and the operators Gp and Gw
are defined in (3.3). Since Egs. (4.11) have variable coeffi-
cients, D* and W¥, it is necessary to freeze them around
a point on the boundary. This procedure is justified as long
as the errors in the design variables are highly oscillatory
compared to W* and D*. We denote the values of W*(x,
y) and D*(x, y) at a point (xg, yo) on the boundary by
W§ and D§, respectively.

4.4. The Coupled State and Costate Equations in
Fourier Space

In terms of their Fourier representation on the bound-
ary, the state and costate error equations are given by the
matrix form

A

—p.U2iw, Gw(D§) 0 0 W
_ﬁngg _F¢W § _pngoiwl }\
(4.12)
iCU]&
| ~Go(wWi)D
0 .
0
The various symbols are given explicitly by
F b — 2'}’10)%
F¢w = —lysm
Fyy = I3
e T (4.13)

Gw(D§) = D§(0? + 03 + Lo.t.
Gp(W§) = —0i(Wi. + vWi,) — 03(Wiy, + vWiy)

- (L)]OJ2(2(1 - V)Wf)kxy).

Note that the terms originating in the cost function serve
as a coupling symmetric block between the state and co-
state systems.

4.5. The Symbol of the Hessian

The design equations residuals, in the transformed space,
are given by

6, = —iwA
s (4.14)
&= Gp(W§) i + Fpp(D§)D,

where Fpp is the linearization of Fy, in (3.6),

2(1 —
FDD _Y (1d2 d) (D(,~j~<)(1—2d)/d’

and the symbols g, and g, are the symbols of the sensitivity
gradients V,F and VF, respectively (see (3.8)).

Inverting the system (4.12) and substituting A and ) in
the symbol of the design residuals (4.14) results in a relation
between the residuals of the design equations and the er-
rors in the design variables. In Fourier space,

%1 _ Iiln 1?12 (Aif’ (4.15)
&2 H,, Hy/\D
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where the matrix Hi]- is the symbol of the Hessian, as dis-
cussed in Sec. 3.2. Hy; is the symbol of the aerodynamic
optimization Hessian, H,, of the structural optimization
Hessian, and Ay, , H,, are the coupling terms. In the follow-
ing, the terms I:Iij are given explicitly

N iG
Ay = —2 (E)Gy + 2p.UlionEyy)  (4.16)
det
N G
le = l(o/l\ D (l(l)lemgGW + BF¢WGW
det
— p.U2w?F ) (4.17)
N G a4
H21 = lw] D (lw1F¢4]GW B G
det
— p.U20}E,y) (4.18)
A l(l)l
sz = — — (lw1F¢¢, + (B + B)Fd;W) + FDDa (419)
det
P
where det is the determinant symbol given by
P A A S,
det = (BGy + 01p.U2)(BGy + wlp.U2). (4.20)

Since GW is a fourth order polynomlal in w7, Gp, F¢¢,
B, and B are of second order, F,y is first order, and Fy, is
of zero order, the principal parts of the above expressions
(the asymptotic limits of high frequencies), are given by

4

A w1F¢¢ ) w1
Hi=———=2 % 421
T R P i T I
N —iGpF
Hy, = Hy =~ ajl_AAD £
BBGyw
_ Zleiw‘l‘ of(Wia + vWE,)
Di |w}(1 — M?) + 0| - (0} + w3)?

CU%( W(’Tyy + VW(Txx) + 2(()1(1)2(1 -

v) Wﬁxy}

|wi(1 — M?) + w3 (0} + w3)?
(4.22)
, . 1—-d
Hy ~Fpp = % (D)2, (4.23)

Note that for simplicity we assumed a complex represen-
tation of the errors, (4.1), and obtained a complex Hessian
symbol. If considering a real representation, i.e.,

a(x y) —a((ol wz)ez(w]x+w2y)+ con](wl wz)e—z(wlr+w2y)

where @ is the complex conjugate of &, and a similar
expression for D, then the resulting Hessian symbol is real
and symmetric.

4.6. Discretization and the Condition Number

In practice the problem is solved numerically and thus
discretization is introduced. Therefore the analysis should
be performed in the discrete space and the Hessian will
depend on the specific discretization. For the “‘ideal” dis-
cretization, the symbol of the Hessian is equal to the differ-
ential one with the substitution

(6 b
o= (G 72)

where (hy, h,) are the mesh sizes in the (x, y) directions,
respectively, and where 6; and 6, vary in the domain
[—7, 7).

Note that “high frequencies’ are those which obey w; >
¢ for some constant, ¢, which is determined by the different
parameters in the problem. In the discrete space this cor-
responds to 6; > ch;. Since the constant c is independent
of the mesh size A, as the grid is refined the portion of
high frequencies in the spectrum increases and therefore
the approximation taken by the local mode analysis above
is more accurate for a larger part of the spectrum. This is
not surprising since as the grid is refined its resolution
increases while the resolution of the smooth components
remains unchanged.

The maximum eigenvalue of each of the disciplinary
Hessians is estimated by

I
)\max - Hu<h>

Unfortunately, the lowest eigenvalue cannot be estimated
by the procedure above since this is precisely the spectrum
range in which the approximation taken by the local mode
analysis does not hold. Still, it is reasonable to assume that
the lowest eigenvalue is asymptotically a fixed number as
the mesh refines and therefore the condition number of
the Hessian is proportional to A,,,,. For a two-dimensional
flow over a beam, (w, = 0), we get for the aerodynamic
part of the Hessian (see Eq. (4.21))

N _2yUin* 1

max ~ |1 _ 2| h2
We conclude that the aerodynamic part of the Hessian is
ill conditioned and its condition number is increasing as
the grid is refined (see [12] for further discussion). The
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structure’s symbol (4.23) approaches a constant, for the
high frequencies, independent of the mesh size. We there-
fore conclude that the structural optimization problem is
well conditioned.

5. APPLICATIONS TO OPTIMIZATION STRATEGIES

In the previous section we computed explicitly the Hes-
sian’s symbol. In this section we discuss the applications
of this result to optimization strategies for the solution
of the aeroelastic optimization problem. We differentiate
between two basic approaches, the “disciplinary” and the
“multidisciplinary.” In the disciplinary approach the solu-
tion of the problem is divided so that one discipline optimi-
zation problem is solved at each stage, decoupled from the
other discipline. In the multidisciplinary approach both the
analysis and optimization solutions are performed in a
tightly coupled manner. These two approaches are now
presented in more detail.

5.1. The Multidisciplinary Approach—Tight Coupling

Lately there has been an effort to develop new optimiza-
tion strategies which couple the two disciplines tightly dur-
ing the analysis and optimization computation. This is
known as the MDO approach [1-7]. According to this
approach after each call to the optimizer the analysis and
adjoint equations are relaxed, or solved exactly, depending
on the feasibility choice (Multidisciplinary Feasibility
(MDF), Individual Discipline Feasibility (IDF) or All at
Once (AAO), [3]).

THE MDO ALGORITHM.

The coupled aerodynanic shape and
structure mni nrum wei ght optin zation
probl ems are sol ved sinultaneously:

min, p y1 Jr(¢e — f¥)* dx + v, [y DV dx
+ 3 Jr pW dx

subject to
Lp=0 z=0
Bp=(a,+W,) z=0

G(D,W)=-p z=0

where the pressure is given by p = (p-
- pwUEOd)x)
5.2. The Disciplinary Approach—Weak Coupling

A common practical strategy used to solve large aero-
elastic shape optimization problems is the disciplinary ap-

proach; i.e., design the aerodynamic optimal shape to give
the best performance and then design a minimum weight
structure, restricted to the aerodynamic shape. The costate
n (M) is used in the aerodynamic (structural) design to
account for the term

E&’%(ﬁ%ﬁ’)
oW a¢ da \dp oW 9D

(in many applications this term is constructed by sensitivity
analysis rather than by the adjoint method as done in
this paper).

THE DISCIPLINARY ALGORITHM.

1. The aerodynam c shape optinization
problemis sol ved given a fixed rigid-
ity D, deflection W, and structure cos-
tate n:

min, [i(¢, — f*)* do
subject to

Lp=0 z=0

Bd=a +W, z=0.

2. The structure m ni mum wei ght prob-
lem is solved given a fixed aerody-
nam ¢ shape «, potential ¢, and aerody-
nam c costate A:

minD Y2 f[‘ Dl/d do + Y3 fr pW do
subject to
G(D,W)=-p z=0.

3. If sone convergence criteria is
nmet then stop, otherwi se go to 1.

We define a “‘disciplinary iteration” as one application
of steps 1 and 2 in the above algorithm (the order being
interchanged, i.e., apply first step 2 followed by step 1).
We say that the optimization problem is loosely coupled
if one disciplinary iteration results in a significant error
reduction in all the design variables. In that case the disci-
plinary algorithm should converge to the multidisciplinary
optimal solution with a small number of disciplinary itera-
tions. In a two discipline system we claim that the system
is loosely coupled if in one of the rows in the Hessian’s
symbol there is a diagonal dominant term. In that case the
set of design variables that correspond to the dominant
term can be determined, to a good approximation, while
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freezing the other variables, thus the problem is loosely
coupled. In the following subsections we simplify the result
(4.21)—(4.23) for two and three space dimensions and show
that in both cases the Hessian’s symbol is diagonal domi-
nant in the first row (corresponding to the aerodynamic
part) indicating loose coupling in the MDO problem.

5.3. Two Space Dimensions

In a two-dimensional flow over a beam the principal
part of the Hessian is given by (see Egs. (4.21)-(4.23))

legc (,02 lego ngx
0 & R S A N -
) 11— M?| [1—M? py
Hw >1)=2 (5.1)
‘legC W(>)kxx _1 w—3/2
[1—M? py 37200

The matrix (5.1) implies that for the nonsmooth error
components in the design variables

H,=H,. (5.2)

Assuming that the errors in the structural design variables
are of the same order of magnitude as the errors in the
shape design variables,

D~ua

(5.3)

we conclude that the equation

Hll& + H225 = — £ (54)
can be approximated by the equation
Hyja = —g. (5.5)

As a result the error in the aerodynamic design variable,
a, is not sensitive to the error in the rigidity, D, and there-
fore can be computed to a good approximation indepen-
dently.

5.4. Three Space Dimensions

In a three-dimensional configuration we differentiate
between the stream-wise and span-wise directions. Let us
assume that the curvature of the deflection in the stream-
wise direction is negligible; i.e., set W§,, = 0. As a result
the coupling term H;, has the form

HlZ( Wﬁxx = O)

_ 2y1U% ol (0ivWi, + @3Wi§, + 21w:(1 — v) W)
"~ Dj |wi(1 = M?) + o3 (F + w3)?

(5.6)

For the design of the structure in the span-wise direction
only, i.e., freezing the stream-wise design as done in prac-
tice for aircraft wing design, the off-diagonal terms in the
Hessian vanish, (w; = 0), and therefore the problem is de-
coupled.

For errors in the stream-wise direction only, (i.e., w, =
0), the off-diagonal terms in the Hessian reduce to

2y, U2 vWi,,

H12(w2 = O) =~ .
Dl - M?|

By a similar argument as done for the two-dimensional
case the three-dimensional optimization problem is also
loosely coupled.

6. NUMERICAL TESTS

In the numerical test we considered a two-dimensional
potential flow over a one-dimensional beam. The problem
was to compute the set {D¥}¥, and the set {a/}Y; such that
the following cost functional is minimized (we denote the
discrete quantities by a superscript /),

F(p,W,D) = ; (1) = FE") + 72 2, (D'

i=1

(6.7)
N 1 N o
+ys 2, (HWE+ 53’42 (af)
i=1 i=1
subject to the inequality constraint
D'=D,.,, 1<i<N (6.8)

and to the following finite difference equations,

(1— M2l + 0ol =0 1<i,k <N
At = ool + W) 1<i<N
= Phx 1<k<N
Phx = Ph-1x 1<k<N
In="0 1<i<N (69
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ar(Dr Wiy = —ph 1<i<N
Wh=Wwi=0
SWh=09"Wh =0

ILWE =L Wh =0

for a clamped beam

for a simply supported

beam, (6.10)
where 9%, 9%, 9%, and 9%, denote finite difference operators
for the first and second derivatives in the x and z direc-
tions, respectively.

In the numerical test the far field parameters were set
to unity except the far field Mach number which was set
to 0.5

Po = po = Us =

The fourth term in the cost function was added for
uniqueness of the optimal solution a* (since only the deriv-
ative «, appears in the equations). The weights in the
cost functional were determined to establish significant
coupling between the disciplines, in particular that at the
optimal solution the deflection, W*, and the shape, a*,
have the same order of magnitude (see Figs. 1b (2b) and
1c (2¢)):

Y1 ="7v:=7vs= 1,7, = 0.01.

In order to avoid singularities in the beam equation,
D" = 0, an inequality constraint has been applied on the ri-
gidity

D(x)=D,(x) 0=x=1, (6.11)
where the minimal value of the rigidity was set to D,,;,(x) =
107* (in the case of a clamped beam this constraint was
binding for two design variables as depicted in Fig. 2d).

The computational grid consisted of an (N X N) grid
on which the potential equation was solved in the whole
domain while the beam equation was solved on the bound-
ary (z = 0). On each grid on the boundary, 1 =i < N,
two design variables were defined: o and D?.

6.1. Derivation of the Gradient

The gradient of the cost functional (6.7) with respect to
the 2N design variables, { D}, and {a}Y,, was derived with
the discrete adjoint method. A Lagrangian was defined in
the discrete level, similar to the continuum level (see Eq.
(3.1)), as the sum of the discrete cost functional and discrete
costate variables multiplying the residuals of the state finite
difference equations. The variation of the Lagrangian with
respect to the state variables resulted in finite difference
equations for the costate variables. The variation of the

Lagrangian with respect to the design variables resulted
in the cost functional gradients.

6.2. Numerical Results

Two numerical cases were considered: a simply sup-
ported beam which has zero moment at the boundaries
(W= W,, = 0) and a clamped beam which has zero change
in the deflection at the boundaries (W = W, = 0). In the
two cases a tightly coupled solution was achieved with the
MDO algorithm (see Section 5.1). The cost functional (6.7)
was driven to a local minimum at which the gradients
vanished. We denote that solution by (a*, D*).

In a second stage, the disciplinary solution (see Section
5.2) was obtained by the following steps. We started from
an initial guess for the design variables («g, D) and solved
the state and costate equations for this initial guess. Then
the structural optimization problem was solved keeping
the aerodynamic variables, {af, ¢, AN, fixed (as ex-
plained in Section 5.2). The optimal rigidity solution at
this stage was denoted by D;. Then the state and costate
equations were solved on («p, D;) and the aerodynamic
optimization problem was solved while keeping the struc-
ture variables, {D?, W, n#}¥,, fixed. The optimal aerody-
namic shape solution at this stage was denoted by «; . This
procedure was repeated a second time for D, and «.

The results (N = 8) for the simply supported and
clamped cases are depicted in Figs. 1 and 2, respectively.
Figure 1a (2a) depicts the tangential derivative of the po-
tential at the optimal solution versus the target distribution
f*. Figure 1b (2b) depicts the deflection at the optimal
solution. Figure 1c (2c) depicts the aerodynamic design
variables {o,;}Y, at different stages of the disciplinary solu-
tion: o* is the solution of the tightly coupled (multidiscipli-
nary) algorithm, « is the initial design, «; is the solution
after a single disciplinary iteration, and «, is the solution
after two disciplinary iterations. Figure 1d (2d) depicts the
result for the structural design variables {D;}Y,. As pre-
dicted by the local mode analysis the disciplinary algorithm
converges to the MDO solution very effectively. It took
practically two disciplinary iterations to recover the
MDO solution.

7. CONCLUDING REMARKS

The symbol of the Hessian for a static aeroelastic optimi-
zation model problem was computed for the nonsmooth
error components in the design variables (Egs. (4.16)—
(4.19)). The result indicates that for the nonsmooth compo-
nents the multidisciplinary optimization system can be de-
coupled to the single discipline optimization problems.
Such a sequential approach should converge to the multi-
disciplinary solution with a small number of disciplinary
iterations. The result also indicates that the aerodynamic
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FIG. 1. Simply supported case: (a) the tangential derivative of the potential at the optimal solution versus the target distribution f*; (b) the
deflection at the optimal solution; (c) the aerodynamic shape at different stages of the disciplinary algorithm. Starting from an initial guess «, after
one iteration of the disciplinary algorithm the solution «; was obtained. The MDO solution is given by «*. Panel (d) depicts the results for the

rigidity similarly to the shape in (c).

optimization problem is ill conditioned, and therefore sec-
ond order information is essential for efficiently solving this
part of the problem [12], while the structural optimization
problem is well conditioned. Thus, it is anticipated that
the number of optimization iterations required to solve
the multidisciplinary problem is determined by the aerody-
namic optimization part of the problem.

The aim of the MDO approach is to couple a refined
CFD code with a detailed finite-element structural analy-
sis code to compute the aeroelastic states prior to each
optimization iteration. The computational complexity of
the MDO algorithm is much greater than that of the
disciplinary algorithm since at each multidisciplinary iter-
ation both the aerodynamic and structural optimization
problems have to be solved. Moreover, the MDO problem
can be ill conditioned even when each of the disciplinary

optimization problem is well conditioned (the MDO
approach also introduces a technical difficulty of joining
together two large codes). The results shown in this
paper indicate that the MDO approach applied on a
fine scale model might not be necessary to obtain a
good approximation of the optimal solution. The effect
of the smooth components can be captured by a coarse
model containing a relatively small number of design
variables and thus can be solved by the MDO approach
with a relatively low computational cost. This will require
simple models for the flow (panel method or small
disturbance potential on a coarse grid) coupled with a
plate model, or coarse finite-element model, for the
structure.

If indeed for a given static aeroelastic optimization
problem the aerodynamic block in the Hessian (Hy) is
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FIG. 2. Clamped case: Panels (a—d) are as described in the legend for Fig. 1(a—d). Note that in this case the rigidity tends to zero at two points

(i =3 and i = 7). At these points the constraint is binding and D; = 1074,

dominant over the coupling block (Hj,) for the non-
smooth components, as discussed, we propose that such
problems be solved in two stages as illustrated in Fig.
3. In the first stage, the MDO approach will be applied
on a coarse model. The second stage starts with the
solution of the MDO algorithm and the refined problem
is solved with the disciplinary algorithm, thus avoiding
the enormous complexity of the MDO algorithm when
applied on the fine scale model. We claim that the
resulting design will be a good approximation of the
optimal solution. We emphasize that this is possible due
to the loose coupling between the two discipline design
problems, otherwise the proposed approach will require
numerous disciplinary iterations and therefore in that
case the MDO approach should be applied also on
fine scales.

A numerical test has been done for the model problem
presented in the paper. The numerical test clearly sup-

ports the predictions of the analysis: within two disciplin-
ary iterations the multidisciplinary solution has been re-
covered.

Finally, how far can we extrapolate the conclusions
from this model problem to a more realistic model?

As for the aerodynamic model, it is shown in [12]
that an identical symbol for the aerodynamic part of the
Hessian is obtained when using Euler equations instead
of the full potential. The analysis for the Navier—Stokes
equations has not yet been completed. Shocks were also
neglected in the aerodynamic model, but we postulate
that they are not going to change the main conclusion
since shocks have a global effect and are not likely to
affect the conditioning of the Hessian.

As for the specific modeling which we have chosen
to analyze, since there are many different models for
the cost function and different constraints depending on
the application, it is impractical to analyze them all.
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FIG. 3. An optimization strategy to solve aeroelastic optimization problems in case of loose coupling as defined in Section 5. Apply the MDO
approach on a coarse model followed by a disciplinary serial approach on fine scales. The result should be a good approximation of the multidisciplinary

optimal solution.

Changes in the shape were considered in the normal
direction only (the planform remains fixed) and therefore
no conclusions are made as to the coupling between
the aerodynamic and the structural design when the
planform’s shape is allowed to change during the optimi-
zation.
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